PL 00-611 WARSZAWA ul. Filtrowa 1 tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86 www.itb.pl # European Technical Assessment ETA-19/0280 of 15/05/2019 #### **General Part** Technical Assessment Body issuing the European Technical Assessment Trade name of the construction product Product family to which the construction product belongs Manufacturer Manufacturing plant(s) This European Technical Assessment contains This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Instytut Techniki Budowlanej LC, LC-A4 and LCL Wedge Anchors Fasteners for use in concrete for redundant nonstructural applications LINK YAPI SAN. VE TIC. AS GOSB 1000 CD. NO:1016 CAYIROVA - GEBZE, KOCAELI Turkey Manufacturing Plants no. 6 and 7 17 pages including 3 Annexes which form an integral part of this assessment European Assessment Document (EAD) 330747-00-0601 "Fasteners for use in concrete for redundant non-structural systems" This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such. ## **Specific Part** #### 1 Technical description of the product The LC, LC-A4 and LCL Wedge Anchors are deformation-controlled expansion anchors in sizes of M6, M8, M10, M12, M16 and M20. The anchors LC and LCL are made of galvanized steel and LC-A4 are made of stainless steel. The anchor is installed in a drilled hole and anchored by deformation-controlled expansion. The description of the product is given in Annex A. # 2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD) The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B. The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works. #### 3 Performance of the product and references to the methods used for its assessment #### 3.1 Performance of the product #### 3.1.1 Safety in case of fire (BWR 2) | Essential characteristic | Performance | |--------------------------|---| | Reaction to fire | Anchors satisfy requirements for Class A1 | | Resistance to fire | See Annex C2 | #### 3.1.2 Safety and accessibility in use (BWR 4) | Essential characteristic | Performance | |---|--------------| | Characteristic resistance for all load directions | See Annex C1 | | Edge distances and spacing | See Annex C1 | #### 3.2 Methods used for the assessment The assessment of the anchors has been made in accordance with the European Assessment Document (EAD) 330747-00-0601 "Fasteners for use in concrete for redundant non-structural systems". The assessment of the anchor in relation to the requirements for resistance to fire has been made in accordance with the EOTA Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire". 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base According to Decision 97/161/EC of the European Commission the system 2+ of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) applies. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD) Technical details necessary for the implementation of the AVCP system are laid down in the control plan which is deposited at Instytut Techniki Budowlanej. For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body. Issued in Warsaw on 15/05/2019 by Instytut Techniki Budowlanej Anna Panek, MSc Deputy Director of ITB Table A1. Anchors LC - materials and dimensions | LC | | M6/25 | M8/30 | M10/40 | M12/50 | M16/65 | M20/80 | |--|------------|----------------|--|------------------|-----------------|-----------------|-------------| | Anchor length L | [mm] | 25 | 30 | 40 | 50 | 65 | 80 | | Inner diameter d | [mm] | 6 | 8 | 10 | 12 | 16 | 20 | | External diameter D | [mm] | 8 | 10 | 12 | 15 | 20 | 25 | | Thread length Lg | [mm] | 11 | 14 | 19 | 25 | 28 | 38 | | Anchor material | | | ith ASTM A510
c ≥ 360 N/mm ² | , SAE 1008 or \$ | SAE 1010; thick | ness of galvani | zing > 5 μm | | Fastening screw
or threaded rod
material | Steel, pro | operty class ≥ | 4.8 according | to EN-ISO 898- | 1; thickness of | galvanizing > 5 | μm | Table A2. Anchor LC-A4 – materials and dimensions | LC-A4 | | M6/25 | M8/30 | M10/40 | M12/50 | M16/65 | |--|---------------------------------------|--|--|---------------|--------|--------| | Anchor length L | [mm] | 25 | 30 | 40 | 50 | 65 | | Inner diameter d | [mm] | 6 | 8 | 10 | 12 | 16 | | External diameter D | [mm] | 8 | 10 | 12 | 15 | 20 | | Thread length Lg | [mm] | 11 | 14 | 19 | 25 | 28 | | Anchor material | Stainless
f _{uk} ≥ 500 f | steel 1.4401 ac
N/mm² and f _{yk} ≥ 2 | cording to EN 100
210 N/mm ² | 88 (AISI 316) | | | | Fastening screw
or threaded rod
material | I I I I I I I I I I I I I I I I I I I | | accordance with E
ding to EN ISO 35 | | | | | LC, LC-A4 and LCL Wedge Anchors | Annex A1 | |---|--| | Product description Characteristic of the product | of European Technical Assessment ETA-19/0280 | Table A3. Anchors LCL - materials and dimensions | LCL | LCL | | M8/25 | M8/30 | M10/25 | M10/40 | M12/25 | M12/50 | M16/65 | M20/80 | |--|-----------------------|------------------------|---------------------------------------|------------|------------|------------|------------|------------|-------------|--------| | Anchor length L | [mm] | 25 | 25 | 30 | 25 | 40 | 25 | 50 | 65 | 80 | | Inner diameter d | [mm] | 6 | 8 | 8 | 10 | 10 | 12 | 12 | 16 | 20 | | External diameter D | [mm] | 8 | 10 | 10 | 12 | 12 | 15 | 15 | 20 | 25 | | Thread length Lg | [mm] | 11 | 14 | 14 | 14 | 19 | 14 | 25 | 28 | 38 | | Anchor material | | | ce with AS
nd f _{yk} ≥ 36 | | , SAE 1008 | 8 or SAE 1 | 010; thick | ness of ga | lvanizing > | > 5 μm | | Fastening screw
or threaded rod
material | - for and
Steel, p | choring in roperty cla | solid conc | rete eleme | to EN-ISO | | | | | | Table A4. Expansion plug materials and dimensions | Expansion plug | | M6 | M8 | M10 | M12 | M16 | M20 | |-------------------------------|------|------|-------|--------------------------------|-------|------------------|------------| | Rear diameter d ₂ | [mm] | 4,90 | 6,40 | 8,00 | 10,30 | 13,55 | 16,55 | | Front diameter d ₃ | [mm] | 4,15 | 5,10 | 6,80 | 7,80 | 12,20 | 14,95 | | Length I _c | [mm] | 9,40 | 11,40 | 16,00 | 20,75 | 25,40 | 30,00 | | Expansion plug material | | | | SWRM8K or S\
o EN 10088 (AI | | ness of galvaniz | ing > 5 μm | Product description Characteristic of the product Annex A2 #### SPECIFICATION OF INTENDED USE #### Anchorages subject to: - Multiple use for non-structural applications: sizes from M6 to M20 (LC and LCL) and sizes from M6 to M16 (LC-A4). - Static and quasi-static loads: sizes from M6 to M20 (LC and LCL) and sizes from M6 to M16 (LC-A4). - Anchorages with requirements related to resistance to fire: sizes from M8 to M20 (LC and LCL) and sizes from M8 to M16 (LC-A4). #### Base material: - Reinforced or unreinforced, cracked or non-cracked normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206. - Solid concrete elements: sizes from M6 to M20 (LC, LCL) and M6 to M16 (LC-A4). - Precast prestressed hollow core slabs (with w/e ≤ 4,2) strength class C40/50 to C50/60 according to EN 206: sizes from M6 to M12 (LCL). #### Use conditions (environmental conditions): - LC, LCL all sizes (galvanized steel) and LC-A4 size M6 (stainless steel): structures subject to dry internal conditions - LC-A4 sizes from M8 to M16 (stainless steel): structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used). #### Design: - Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work. - Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The position of the anchor is
indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.). - Anchorages under static and quasi-static loads are designed in accordance with EN 1992-4:2018; the anchors LC, LC-A4 and LCL anchored in solid concrete elements according to design method B, the anchors LCL anchored in precast, prestressed hollow core slabs according to design method A. - The design of anchorages under fire exposure has to consider the conditions given in the EOTA Technical Report TR 020. - Fasteners are only to be used for multiple use for non-structural applications acc. to EAD 330747-00-0601. #### Installation: - Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site. - Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor. - Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools. - Check of concrete being well compacted, e.g. without significant voids. - Positioning of the drill holes without damaging the reinforcement. - In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application. - Anchor installation such that the effective anchorage depth is complied with. - Anchor expansion by impact on the cone (expansion plug) of the anchor. | LC, LC-A4 and LCL Wedge Anchors | Annex B1 | |---------------------------------|--| | | 0. 200000000000000000000000000000000000 | | Intended use
Intended use | of European Technical Assessment ETA-19/0280 | | | | Table B1: Installation parameters of LC, LC-A4 and LCL anchors in solid concrete elements | Anchor size | Drill hole
diameter | Drill hole
depth | Effective
anchorage
depth | Installation
torque
(max) | Thickness
of concrete
member
(min) | Screwing
depth
(min) | Screwing
depth
(max) | Diameter
of clearance
hole in the
fixture | |-------------|------------------------|---------------------|----------------------------------|---------------------------------|---|----------------------------|----------------------------|--| | | [mm] | [mm] | [mm] | [Nm] | [mm] | [mm] | [mm] | [mm] | | | d ₀ | h ₁ | h _{ef} = h _o | max T _{inst} | h _{min} | I _{s, min} | I _{s, max} | df | | M6/25 | 8 | 27 | 25 | 4,5 | 80 | 6 | 11 | 7 | | M8/25 | 10 | 27 | 25 | 11 | 30 | 8 | 13 | 9 | | M8/30 | 10 | 32 | 30 | 11 | 80 | 8 | 13 | 9 | | M10/25 | 12 | 27 | 25 | 22 | 30 | 10 | 15 | 12 | | M10/40 | 12 | 42 | 40 | 22 | 80 | 10 | 15 | 12 | | M12/25 | 15 | 27 | 25 | 38 | 30 | 12 | 20 | 14 | | M12/50 | 15 | 52 | 50 | 38 | 100 | 12 | 20 | 14 | | M16/65 | 20 | 67 | 65 | 98 | 130 | 16 | 25 | 18 | | M20/80 | 25 | 82 | 80 | 130 | 160 | 20 | 35 | 22 | Intended use Installation parameters – solid concrete elements Annex B2 | Core width / Web thickness; w / e | ≤ 4,2 | |---|-------------------------| | Core distance | I _c ≥ 100 mm | | Prestressing steel | l _p ≥ 100 mm | | Distance between anchor position and prestressing steel | a _p ≥ 50 mm | Table B2: Installation parameters of LCL anchors in precast, prestressed hollow core slabs | Anchor size Drill hole diameter [mm] | | Drill hole
depth | Effective
anchorage
depth | Installation
torque
(max) | Screwing depth (min) | Screwing depth (max) | Diameter of clearance hole in the fixture | |--|----------------|-------------------------------|---------------------------------|---------------------------------|----------------------|----------------------|---| | | [mm] | [mm] | [Nm] | [mm] | [mm] | [mm] | | | | d _o | d ₀ h ₀ | h _{ef} | max T _{inst} | I _{s, min} | I _{s, max} | df | | M6/25 | 8 | 25 | 25 | 4,5 | 6 | 11 | 7 | | M8/30 | 10 | 30 | 30 | 11 | 8 | 13 | 9 | | M10/40 | 12 | 40 | 40 | 22 | 10 | 15 | 12 | | M12/50 | 15 | 50 | 50 | 38 | 12 | 20 | 14 | #### Intended use Installation parameters – precast, prestressed hollow core slabs #### Annex B3 Table B3: Installation tools | Installation too | ols | M6/25 | M8/25 | M8/30 | M10/25 | M10/40 | M12/25 | M12/50 | M16/65 | M20/80 | |-------------------------|-----|-------|-------|-------|--------|--------|--------|--------|--------|--------| | Diameter d ₁ | mm | 5,0 | 6,6 | 6,6 | 8,3 | 8,3 | 10,2 | 10,2 | 13,5 | 16,8 | | Diameter d ₂ | mm | 7,5 | 9,5 | 9,5 | 11,5 | 11,5 | 14,5 | 14,5 | 19,5 | 24,5 | | Length L ₁ | mm | 14,8 | 17,0 | 18,0 | 17,0 | 23,0 | 17,0 | 28,0 | 33,0 | 47,0 | Intended use Installation instruction – general ## Annex B4 #### Intended use Installation instruction – LC and LC-A4 anchor in solid concrete element #### Annex B5 Intended use Installation instruction – LCL anchor in solid concrete element # Annex B6 Drill a hole of required diameter and depth. Clear the hole of drilling dust and debris (using blowpump). Insert wedge anchor, slotted end first. Use the setting tool to drive the internal wedge into the anchor. Insert bolt or stud through fixture and tighten to the recommended torque. After installation. ### LC, LC-A4 and LCL Wedge Anchors #### Intended use Installation instruction – LCL anchor in precast, prestressed hollow core slabs #### Annex B7 Table C1: Characteristic resistance – LC – in solid concrete elements | LC | | | Property class | M6/25 | M8/30 | M10/40 | M12/50 | M16/65 | M20/80 | | |---|--------------------------------|----------|----------------|------------|-------|--------|--------|--------|--------|--| | All load directions (fastening scre | w or threa | aded rod | property cla | iss ≥ 4.8) | | | | | | | | Characteristic resistance in cracked and non-cracked concrete F _{Rk} [kN] C20/25 to C50/60 | | | ≥ 4.8 | 1,52 | 3,01 | 4,57 | 6,43 | 13,31 | 17,38 | | | Partial safety factor | | 1,2 | | | | | | | | | | Spacing | S _{cr} | [mm] | - | | 2 | | 260 | 320 | | | | Edge distance | C _{cr} | [mm] | | la mara | 1 | | 195 | 240 | | | | Shear load with lever arm | | | | | | | | | | | | Characteristic bending resistance | M ⁰ _{Rk,s} | [Nm] | 4.8 | 6 | 15 | 30 | 52 | 133 | 260 | | | Characteristic bending resistance | M ⁰ _{Rk,s} | [Nm] | 5.8 | 8 | 19 | 37 | 66 | 167 | 325 | | | Characteristic bending resistance | M ⁰ _{Rk,s} | [Nm] | 6.8 | 9 | 23 | 45 | 79 | 200 | 390 | | | Characteristic bending resistance | [Nm] | 8.8 | 12 | 30 | 60 | 105 | 267 | 520 | | | | Partial safety factor | | 1,25 | | | | | | | | | ⁽¹⁾ in the absence of other national regulations Table C2: Characteristic resistance – LC-A4 – in solid concrete elements | LC-A4 | | | Property class | M6/25 | M8/30 | M10/40 | M12/50 | M16/65 | |--|--------------------------------|----------|----------------|-----------|-------|--------------|--------|--------| | All load directions (fastening scre | w or threa | aded rod | property cla | ss A4-70) | | State of Wil | | | | Characteristic resistance in cracked and non-cracked concrete C20/25 to C50/60 | F _{Rk} | [kN] | A4-70 | 1,00 | 2,01 | 3,20 | 4,59 | 8,27 | | Partial safety factor | | 1,2 | | | | | | | | Spacing | Scr | [mm] |] - [| | 2 | 00 | | 260 | | Edge distance | C _C | [mm] | | | 1 | 50 | | 195 | | Shear load with lever arm | | | | 1911 | | 2015 | | | | Characteristic bending resistance | M ⁰ _{Rk,s} | [Nm] | A4-70 | 11 | 92 | 233 | | | | Partial safety factor | γ _{Ms} (1) | [-] | - | - | 7 | 1,25 | | | ⁽¹⁾ in the absence of other national regulations **Performances**Characteristic resistance Annex C1 Table C3: Characteristic resistance – LCL – in solid concrete elements | LCL | Property class | M6/
25 | M8/
25 | M8/
30 | M10/
25 | M10/
40 | M12/
25 | M12/
50 | M16/
65 | M20/
80 | | | |--|--------------------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|--------------|-------| | All load directions (fastening | screw or t | hreaded | rod prope | rty clas | s ≥ 4.8 | 3) | | | | | | | | Characteristic resistance in cracked and non-cracked concrete C20/25 to C50/60 | F _{Rk} | [kN] | ≥ 4.8 | 1,52 | 1,09 | 3,01 | 1,77 | 4,57 | 2,28 | 6,43 | 13,31 | 17,38 | | Partial safety factor | γ2 (1) | [-] | | | | | | 1,2 | | • | | | | Spacing | S _{cr} | [mm] | 1 - 1 | | 260 | 320 | | | | | | | | Edge distance | Cor | [mm] | | 150 | | | | | | | 195 | 240 | | Shear load with lever arm | | | | | | | | 21/2 | | 77 | | | | Characteristic bending resistance | M ⁰ _{Rk,s} | [Nm] | 4.8 | 6 | 15 | 15 | 30 | 30 | 52 | 52 | 133 | 260 | | Characteristic bending resistance | M ⁰ _{Rk,s} | [Nm] | 5.8 | 8 | 19 | 19 | 37 | 37 | 66 | 66 | 167 | 325 | | Characteristic bending resistance | M ⁰ _{Rk,s} | [Nm] | 6.8 | 9 | 23 | 23 | 45 | 45 | 79 | 79 | 200 | 390 | | Characteristic bending resistance | M ^o _{Rk,s} | [Nm] | 8.8 | 12 | 30 | 30 | 60 | 60 | 105 | 105 | 267 | 520 | | Partial safety factor | γ _{Ms} ⁽¹⁾ | [-] | _ | 1,25 | | | | | | | ************ | | ⁽¹⁾ in the absence of other national regulations **Performances** Characteristic resistance Annex C2 Table C4: Characteristic resistance – LCL – in precast, prestressed hollow core slabs | LCL | | | M6/25 | M8/30 | M10/40 | M12/50 | |---|--
------|-------|-------|--------|--------| | Steel failure | | | | | | | | Partial safety factor | γ _{Ms} ⁽¹⁾ | [-] | 1,25 | 1,25 | 1,25 | 1,25 | | Pullout failure | | | | 11.2 | | | | Characteristic resistance in precast prestressed hollow core slabs of strength class C40/50 to C50/60 | N ⁰ _{Rk,p} | [kN] | 3,5 | 4,0 | 14,0 | 16,0 | | Partial safety factor | [-] | 1,4 | 1,4 | 1,4 | 1,2 | | | Concrete cone failure | | | | | | | | Factor for non-cracked concrete | $k_1^{(2)} = k_{ucr}^{(3)}$ | [-] | 10,1 | 10,1 | 10,1 | 10,1 | | Factor for non-cracked concrete | k _{ucr,N} ⁽⁴⁾ | [-] | 11,0 | 11,0 | 11,0 | 11,0 | | Installation safety factor | $\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)(4)}$ | [-] | 1,4 | 1,4 | 1,4 | 1,2 | | Characteristic spacing | S _{cr,N} | [mm] | 200 | 200 | 200 | 200 | | Characteristic edge distance | C _{cr,N} | [mm] | 100 | 100 | 100 | 100 | | Steel failure with lever arm | | | | | | | | Characteristic bending resistance for class ≥ 4.8 | M ⁰ _{Rk,s} | [Nm] | 6 | 15 | 30 | 52 | | Characteristic bending resistance for class ≥ 5.8 | M ⁰ _{Rk,s} | [Nm] | 8 | 19 | 37 | 66 | | Characteristic bending resistance for class ≥ 6.8 | M ⁰ _{Rk,s} | [Nm] | 9 | 23 | 45 | 79 | | Characteristic bending resistance for class ≥ 8.8 | M ⁰ _{Rk,s} | [Nm] | 12 | 30 | 60 | 105 | | Partial safety factor | γ _{Ms} ⁽¹⁾ | [-] | 1,25 | 1,25 | 1,25 | 1,25 | | Concrete edge failure | | | | | | | | Minimum member thickness | h _{min} | [mm] | 30 | 30 | 30 | 30 | | Minimum edge distance | C _{min} | [mm] | 35 | 40 | 55 | 70 | | Minimum spacing | S _{min} | [mm] | 100 | 100 | 100 | 100 | **Performances** Characteristic resistance Annex C3 ⁽¹⁾ in the absence of other national regulations (2) parameter for design acc. ETAG 001 Annex C (3) parameter for design acc. CEN/TS 1992-4-4:2009 (4) parameter for design acc. EN 1992-4:2018 **Table C5:** Characteristic resistance under fire exposure in solid concrete elements C20/25 to C50/60 – LC and LCL | Fire resistance class | LC and LC | L | M8/25 | M8/30 | M10/25 | M10/40 | M12/25 | M12/50 | M16/65 | M20/80 | |-----------------------|--|------|---------------------|-------|--------|--------|--------|--------|--------|--------| | All load directio | ns | | | | 374 | | | | | HI ST | | R30 | 3 | [kN] | 0,1 | 0,4 | 0,2 | 0,9 | 0,3 | 1,6 | 3,1 | 4,3 | | R60 | Characteristic | [kN] | 0,1 | 0,3 | 0,2 | 8,0 | 0,3 | 1,3 | 2,4 | 3,7 | | R90 | resistance
F _{Rk,fi} (1),(2) | [kN] | 0,1 | 0,3 | 0,2 | 0,6 | 0,3 | 1,1 | 2,0 | 3,2 | | R120 | | [kN] | 0,1 | 0,2 | 0,2 | 0,5 | 0,2 | 0,8 | 1,6 | 2,5 | | Spacing | S _{cr,fi} | [mm] | 4 x h _{ef} | | | | | | | | | Edge distance | C _{cr,fi} | [mm] | 2 x h _{ef} | | | | | | | | The design method covers anchors with a fire attack from one side only. In case of fire attack from more than one side, the edge distance shall be \geq 300 mm. (2) fastening screw or threaded rod property class no less than 4.8 **Table C6:** Characteristic resistance under fire exposure in solid concrete elements C20/25 to C50/60 – LC-A4 | Fire resistance class | LC-A4 | | M8/30 | M10/40 | M12/50 | M16/65 | | | |-----------------------|--|------|---------------------|--------|--------|--------|--|--| | All load direction | ons | | | | | | | | | R30 | | [kN] | 0,5 | 0,8 | 1,1 | 2,1 | | | | R60 | Characteristic | [kN] | 0,5 | 0,8 | 1,1 | 2,1 | | | | R90 | resistance
F _{Rk,fi} (1),(2) | [kN] | 0,5 | 0,8 | 1,1 | 2,1 | | | | R120 | | [kN] | 0,4 | 0,6 | 0,9 | 1,6 | | | | Spacing | S _{cr,fi} | [mm] | 4 x h _{ef} | | | | | | | Edge distance | C _{cr,fi} | [mm] | 2 x h _{ef} | | | | | | The design method covers anchors with a fire attack from one side only. In case of fire attack from more than one side, the edge distance shall be ≥ 300 mm. (2) fastening screw or threaded rod property class no less than A4-70 LC, LC-A4 and LCL Wedge Anchors **Performances** Characteristic resistance under fire exposure Annex C4 $^{^{(1)}}$ in the absence of other national regulations a partial safety factor γ_{m,f_i} = 1,0 is recommended $^{^{(1)}}$ in the absence of other national regulations a partial safety factor $\gamma_{m,f}$ = 1,0 is recommended # European Technical Assessment ETA 18/0441 of 03/06/2018 Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague Trade name of the construction product Product family to which the construction product belongs eota@tzus.cz Product area code: 33 Torque controlled expansion anchor for use in uncracked concrete Manufacturer LINK YAPI SAN. VE TİC. AŞ. GOSB 1000 CD. NO:1016 ÇAYIROVA – GEBZE KOCAELİ TURKEY LT Manufacturing Plant No 2 This European Technical Assessment contains 10 pages including 8 Annexes which form an integral part of this assessment This European Technical Assessment is issued in accordance with regulation (FII) No 305/2011, on the basis of (EU) No 305/2011, on the basis of EAD 330232-00-0601 Mechanical fasteners for use in concrete This version is a corrigendum to ETA 18/0441 of 03/06/2018 Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such #### 1. Technical description of the product The LT are through-fixing torque-controlled expansion anchors in sizes of M8, M10, M12, M16 and M20. Each type comprises a nut, bolt, washer and expansion sleeve. The anchors are made from zinc-plated and passivated steel. The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage. The installed anchor is shown in Annex 1. # 2. Specification of the intended use in accordance with the applicable EAD The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B. The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works. # 3. Performance of the product and references to the methods used for its assessment 3.1 Mechanical resistance and stability (BWR 1) | Essential characteristic | Performance | |---|-----------------------| | Characteristic resistance (static and quasi-static loading) | See Annex C 1 and C 2 | | Displacement | See Annex C 1 and C 2 | 3.2 Safety in case of fire (BWR 2) | Essential characteristic | Performance | | | | | | |--------------------------|----------------------------------|--|--|--|--|--| | Reaction to fire | Class A1 according to EN 13501-1 | | | | | | | Resistance to fire | No performance assessed | | | | | | # 4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base According to the Decision 97/463/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply. # 5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague. Issued in Prague on 03.06.2018 Ву Ing. Mária Schaan Head of the Technical Assessment Body Official Journal of the European Communities L 198/31 25.7.1997 # LT - Installed anchor t_{fix} (Std) $-h_{e}$ (Std)--t_{fix} (Red)-LT - components Anchor body Expansion sleeve Nut Washer LT Annex A 1 **Product description** Installed conditions and components # Table A1 - Materials | Component | Material | Coating | |------------------|---|--| | Anchor body | Steel grade C17C, EN 10263-2 | | | Expansion sleeve | Steel grade DC03, EN 10139
M8-M12 C590
M16-M20 C490 | Electroplated ≥ 5 µm and clear chromate film Cr3 | | Hexagonal nut | according DIN 934 | | | Washer | according DIN 125A or DIN 9021 | | **Table A2 – Material properties** | Component | | M8 – M16 | M20 | |---|----------------------|-----------|-----------| | Anchor body – ultimate tensile strength | [N/mm ²] | 400 - 480 | 480 - 530 | | | | M8 – M12 | M16 – M20 | | Expansion sleeve – hardness | [HV] | 185 - 215 | 155 - 185 | Table A3 – Marking | <u> 1 abie A3 – I</u> | viark | ing |-----------------------|-------|------------------|--------|--------|------------|-------|-------|---------|-------------|-------|-------|--------|--------|---------|--------|-------|---------|------|---------|-----------| | | | | | | | | | | M | 8 | | | | | | | | | | | | Bolt length | [mm] | 60 | 65 | 7 | 7 5 | 80 | | 85 | 90 |) | 95 | 95 100 | | 5 11 | 5 | 120 | 140 |) | 150 | 160 | | Head marking | | В | b | | С | d | ł | D | е | | Е | F | f | G | ; | Н | K | | L | М | | Bolt marking | | -/10 | -/15 | 10 | /25 | 15/ | 30 2 | 20/35 | 25/4 | 10 3 | 0/45 | 35/50 | 40/5 | 55 50/ | 65 5 | 55/70 | 75/9 | 0 8 | 5/100 | 95/110 | | | | | | | | | | | M1 | 0 | | | | | | | | | | | | Bolt length | [mm] | 65 | | 80 | | 85 | | 90 | ç | 95 | 11 | 15 | 120 | 13 | 30 | 140 |) | 150 |) | 180 | |
Head marking | | В | | D | | d | | е | | E | | } | Н | | J | K | | L | | Р | | Bolt marking | | -/5 | 10 | 0/20 | 1 | 5/25 | 2 | 20/30 | 25 | /35 | 45/ | /55 | 50/60 | 60/ | 60/70 | | 30 | 80/9 | 0 1 | 10/120 | | M12 | Bolt length | [mm] | 80 100 | 105 | 5 11 | 0 11 | 15 1 | 120 | 125 | 135 | 140 | 150 | 160 | 180 | 200 | 220 | 24 | 0 2 | 50 | 260 | 280 | | Head marking | | D F | f | G | Ç | 9 | h | Н | J | K | L | М | Р | R | S | Т | Į | J | V | Χ | | Bolt marking | | <i>-</i> /5 5/25 | 5 10/3 | 0 15/3 | 20 | /40 2 | 25/45 | 30/50 4 | 10/60 | 45/65 | 55/75 | 65/85 | 85/105 | 105/125 | 125/14 | 145/ | 165 155 | /175 | 165/18 | 5 185/205 | | | | | | | | | | | M1 | 6 | | | | | | | | | | | | Bolt length | [mm] | 100 | 10 | 5 | 125 | | 130 | 140 | 0 | 150 | 16 | 60 | 180 | 200 | 22 | 20 | 250 | 2 | 280 | 300 | | Head marking | | F | f | | Н | | J | K | | L | Ν | Λ | Р | R | | S | U | | Χ | Υ | | Bolt marking | | -/5 | -/10 |) | 5/25 | 1 | 0/30 | 20/4 | 10 3 | 30/50 | 40/ | 60 6 | 60/80 | 80/100 | 100 | /1201 | 30/15 | 16 | 0/180 | 180/200 | | M20 | Bolt length | [mm] | 12 | 5 | | 140 |) | | 160 | | 165 | 5 18 | | 80 | 200 | | | 250 | | 300 | | | Head marking | | Н | | | K | | | М | | m | | Р | | R | | | U | | Y | | | Bolt marking | · | -/5 | 5 | | -/20 | | 2 | 0/40 | | 25/4 | 15 | 40 | /60 | 60 | /80 | 1 | 110/130 | | 160/180 | | | LT | | |---------------------|-----------| | Product description | Annex A 2 | | Materials | | | Marking | | #### Specifications of intended use #### Anchorages subject to: Static and quasi-static load. #### **Base materials** - Uncracked concrete. - Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12. #### **Use conditions (Environmental conditions)** Structures subject to dry internal conditions. #### Design: - The anchorages are designed in accordance with the FprEN 1992-4:2016 and EOTA Technical Report TR 055, December 2016 under the responsibility of an engineer experienced in anchorages and concrete work. - Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings. #### Installation: - Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site. - Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor. - Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools. - Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance. - In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application. | LT | | |--------------------------------|-----------| | Intended use
Specifications | Annex B 1 | | Size | Drill hole | Bolt | Thread | Hole | Sta | andard embed | lment | Re | duced embed | ment | Installation | |-------|---------------------|------------|---------------------|---------------------|----------|-------------------------------|-----------------------|-----------|-------------------------------|------------------------|-------------------------| | O.Z.o | diameter | length | length | diameter in fixture | | Effective embedment | Max. fixture | | Effective embedment | Max. fixture thickness | torque | | | d₀ [mm] | l [mm] | l _G [mm] | d _f [mm] | h₀ [mm] | depth
h _{ef} [mm] | t _{fix} [mm] | h₀ [mm] | depth
h _{ef} [mm] | t _{fix} [mm] | T _{inst} [N.m] | | | α ₀ [mm] | 60 | 25 | 9 | - | - | | 40 | 32 | 10 | i inst [i v.iii] | | | | 65 | 30 | 9 | - | - | - | 40 | 32 | 15 | | | | | 75 | 35 | 9 | 55 | 47 | 10 | 40 | 32 | 25 | | | | | 80
85 | 40
45 | 9 | 55
55 | 47
47 | 15
20 | 40
40 | 32
32 | 30
35 | | | | | 90 | 50 | 9 | 55 | 47 | 25 | 40 | 32 | 40 | | | M8 | 8 | 95 | 55 | 9 | 55 | 47 | 30 | 40 | 32 | 45 | 15 | | IVIO | 0 | 100 | 60 | 9 | 55 | 47 | 35 | 40 | 32 | 50 | 15 | | | | 105
115 | 65 | 9 | 55 | 47
47 | 40 | 40
40 | 32 | 55
05 | | | | | 120 | 75
80 | 9 | 55
55 | 47 | 50
55 | 40 | 32
32 | 65
70 | | | | | 140 | 100 | 9 | 55 | 47 | 75 | 40 | 32 | 90 | | | | | 150 | 100 | 9 | 55 | 47 | 85 | 40 | 32 | 100 | | | | | 160 | 100 | 9 | 55 | 47 | 95 | 40 | 32 | 110 | | | | | 65
80 | 21
31 | 11
11 | -
59 | -
49 | 10 | 49
49 | 39
39 | 5
20 | | | | | 85 | 36 | 11 | 59 | 49 | 15 | 49 | 39 | 25 | | | | | 90 | 41 | 11 | 59 | 49 | 20 | 49 | 39 | 30 | | | | | 95 | 46 | 11 | 59 | 49 | 25 | 49 | 39 | 35 | | | M10 | 10 | 115 | 66 | 11 | 59 | 49 | 45 | 49 | 39 | 55 | 30 | | | | 120
130 | 71
81 | 11
11 | 59
59 | 49
49 | 50
60 | 49
49 | 39
39 | 60
70 | | | | | 140 | 91 | 11 | 59 | 49 | 70 | 49 | 39 | 80 | | | | | 150 | 101 | 11 | 59 | 49 | 80 | 49 | 39 | 90 | | | | | 180 | 100 | 11 | 59 | 49 | 110 | 49 | 39 | 120 | | | | | 80 | 30 | 13 | - | - | - | 60 | 48 | 5 | | | | | 100
105 | 40
45 | 13
13 | 80
80 | 68
68 | 5
10 | 60
60 | 48
48 | 25
30 | | | | | 110 | 50 | 13 | 80 | 68 | 15 | 60 | 48 | 35 | | | | | 115 | 55 | 13 | 80 | 68 | 20 | 60 | 48 | 40 | | | | | 120 | 60 | 13 | 80 | 68 | 25 | 60 | 48 | 45 | | | | | 125 | 65 | 13 | 80 | 68 | 30 | 60 | 48
48 | 50 | | | | | 135
140 | 75
80 | 13
13 | 80
80 | 68
68 | 40
45 | 60
60 | 48 | 60
65 | | | M12 | 12 | 150 | 90 | 13 | 80 | 68 | 55 | 60 | 48 | 75 | 50 | | | | 160 | 100 | 13 | 80 | 68 | 65 | 60 | 48 | 85 | | | | | 180 | 100 | 13 | 80 | 68 | 85 | 60 | 48 | 105 | | | | | 200
220 | 100
100 | 13
13 | 80
80 | 68
68 | 105
125 | 60
60 | 48
48 | 125
145 | | | | | 240 | 100 | 13 | 80 | 68 | 145 | 60 | 48 | 165 | | | | | 250 | 100 | 13 | 80 | 68 | 155 | 60 | 48 | 175 | | | | | 260 | 100 | 13 | 80 | 68 | 165 | 60 | 48 | 185 | | | | | 280 | 100 | 13 | 80 | 68 | 185 | 60 | 48 | 205 | | | | | 100
105 | 30
35 | 18
18 | - | - | - | 80
80 | 65
65 | 5
10 | | | | | 125 | 45 | 18 | 100 | 85 | 5 | 80 | 65 | 25 | | | | | 130 | 50 | 18 | 100 | 85 | 10 | 80 | 65 | 30 | | | | | 140 | 60 | 18 | 100 | 85 | 20 | 80 | 65 | 40 | | | Mac | 10 | 150 | 70 | 18 | 100 | 85 | 30 | 80 | 65 | 50 | 100 | | M16 | 16 | 160
180 | 80
100 | 18
18 | 100 | 85
85 | 40
60 | 80
80 | 65
65 | 60
80 | 100 | | | | 200 | 100 | 18 | 100 | 85 | 80 | 80 | 65 | 100 | | | | | 220 | 100 | 18 | 100 | 85 | 100 | 80 | 65 | 120 | | | | | 250 | 100 | 18 | 100 | 85 | 130 | 80 | 65 | 150 | | | | | 280 | 100 | 18 | 100 | 85 | 160 | 80 | 65
65 | 180 | | | | | 300
125 | 100
50 | 18
22 | 100 | 85
- | 180 | 80
100 | 65
80 | 200
5 | | | | | 140 | 50 | 22 | - | - | - | 100 | 80 | 20 | | | | | 160 | 61 | 22 | 119 | 99 | 20 | 100 | 80 | 40 | | | M20 | 20 | 165 | 66 | 22 | 119 | 99 | 25 | 100 | 80 | 45 | 200 | | 14120 | 20 | 180 | 81 | 22 | 119 | 99 | 40 | 100 | 80 | 60 | 200 | | | | 200
250 | 100
100 | 22 | 119 | 99 | 60 | 100 | 80 | 80
130 | | | | | ∠5∪ | 100 | 22 | 119 | 99 | 110 | 100 | 80 | 130 | | | LT | | |---|-----------| | Intended use
Installation parameters | Annex B 2 | Table B2 - Installation parameters - Minimum spacing and edge distance | Size | | | | М | 8 | M10 | | M12 | | M16 | | M20 | | |--------------------------|-------------------|------------------|------|-------------------|-----|-------------------|-----|-----|-----|-----|-----|-----|-----| | | | | | Red ¹⁾ | Std | Red ¹⁾ | Std | Red | Std | Red | Std | Red | Std | | Minimum thickness of cor | ncrete member | h_{min} | [mm] | 100 | 100 | 100 | 100 | 100 | 136 | 130 | 170 | 158 | 198 | | Minimum spacing | | Smin | [mm] | 45 | 50 | 55 | 55 | 100 | 75 | 100 | 90 | 125 | 140 | | 1 | for edge distance | c≥ | [mm] | 50 | 55 | 65 | 65 | 100 | 90 | 100 | 105 | 125 | 160 | | Minimum edge distance | | Cmin | [mm] | 40 | 40 | 65 | 50 | 100 | 65 | 100 | 80 | 125 | 100 | | | for spacing | s≥ | [mm] | 100 | 100 | 55 | 90 | 100 | 100 | 100 | 150 | 125 | 200 | ¹⁾ Use restricted to anchoring statically indeterminate structural components # **Pre-torque installation** # Post-torque installation | LT | | |--------------------------------------|-----------| | Intended use Installation parameters | Annex B 3 | #### Installation instructions Drill a hole of required diameter and depth Clear the hole of drilling dust and debris (using blowpump or equivalent method) Lightly tap the throughbolt through the fixture into hole with a hammer, until fixing depth is reached 4. Tighten to the recommended torque 5. Assembled condition of anchor LT Intended use Installation instructions Annex B 4 # Table C1 - Characteristic resistance under tension load | Steel failure | | | | | | | | |---------------------------|------------|------|-----------------------|-----------------------|---------|---------|---------| | Size | | | M8 | M10 | M12 | M16 | M20 | | | | | Red ¹⁾ Std | Red ¹⁾ Std | Red Std | Red Std | Red Std | | Characteristic resistance | $N_{Rk,s}$ | [kN] | 15,8 | 25,2 | 37,3 | 66,1 | 101,0 | | Partial safety factor | γMs | [-] | 1,4 | 1,4 | 1,4 | 1,4 | 1,4 | | Pull-out failure | | | | | | | | | | | | | | |--|-----------------|------------|------|------|------|------|------|------|------|------|------|------|------| | Characteristic resistance in uncracked | concrete C20/25 | $N_{Rk,p}$ | [kN] | 9,0 | 12,0 | 9,0 | 12,0 | 16,0 | 25,0 | 30,0 | 40,0 | 35,0 | 40,0 | | Installation safety factor | | γinst | [-] | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | 1,2 | | Increasing factor | | | | |
										C30/37			1,25	1,10	1,36	1,37	1,20	1,16	1,12	1,17	1,18	1,30		Uncracked concrete	C40/50	Ψc	[-]	1,50	1,21	1,72	1,74	1,40	1,33	1,23	1,34	1,36	1,59			C50/60			1,76	1,32	2,08	2,10	1,60	1,49	1,34	1,50	1,54	1,89		Concrete cone failure														---	--------------------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[-]					11	,0						Installation safety factor	γinst	[-]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2		Effective anchorage depth	hef	[mm]	32	47	39	49	48	68	65	85	79	99		Spacing	S _{cr,N}	[mm]	96	141	117	147	144	204	195	255	237	297		Edge distance	Ccr,N	[mm]	48	71	59	74	72	102	98	128	119	149		Splitting failure														----------------------------	--------------------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		Spacing	Scr,sp	[mm]	160	240	200	260	250	370	360	430	410	530		Edge distance	C _{cr,sp}	[mm]	80	120	100	130	125	185	180	215	205	265		Installation safety factor	γinst	[-]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	¹⁾ Use restricted to anchoring statically indeterminate structural components Table C2 - Displacement under tension load	Size			M8		M10		M12		M16		M20			------------------------------------	-----	------	-------	------	-------	------	------	------	------	------	------	------					Red1)	Std	Red1)	Std	Red	Std	Red	Std	Red	Std		Tension load in uncracked concrete	Ν	[kN]	3,6	4,8	3,6	4,8	6,3	9,9	11,9	15,9	13,9	15,9		Displacement	δηο	[mm]	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20			δn∞	[mm]	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	¹⁾ Use restricted to anchoring statically indeterminate structural components	LT		--		Performances		Characteristic resistance under tension load		Displacement under tension load	Annex C 1 # Table C3 - Characteristic resistance under shear load	Steel failure without lever arm									---------------------------------	-------------------	-----	-----------------------	-----------------------	---------	---------	---------		Size	Size				M12	M16	M20					Red ¹⁾ Std	Red ¹⁾ Std	Red Std	Red Std	Red Std		Characteristic resistance	$V^0_{Rk,s}$ [kN]		10,1	16,0	23,3	43,0	67,4		Ductility factor	k ₇	[-]	0,8	0,8	0,8	0,8	0,8		Partial safety factor	γMs	[-]	1,25	1,25	1,25	1,25	1,25		Steel failure with lever arm									------------------------------	----------------	-----	------	------	------	------	------		Characteristic resistance	$M^0_{Rk,s}$ [Nm]	17	35	61	154	301		Partial safety factor	γMs	[-]	1,25	1,25	1,25	1,25	1,25		Concrete pry-out failure	•													---	----------------	------	-----	-----	------	-----	-----	-----	-----	-----	------	-----		Characteristic resistance concrete C20/25	$V_{Rk,cp}$	[kN]		-	12,0	-	-	-	-	-	68,7	-		Factor	k ₈	[-]		-	1,0	-	-	-	-	-	2,0	-		Installation safety factor	γinst	[-]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2		Concrete edge failure														----------------------------	------------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		Effective length of anchor	ℓ f	[mm]	32	47	39	49	48	68	65	85	79	99		Anchor diameter	d_{nom}	[mm]	ω	8		10		2	16		20			Installation safety factor	γinst	[-]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	¹⁾ Use restricted to anchoring statically indeterminate structural components ## Table C4 - Displacement under shear load	Size	M	18	M10		M12		M16		M20					------------------------------------	-----	------	-------	-----	-------	-----	-----	-----	------	------	------	------					Red1)	Std	Red1)	Std	Red	Std	Red	Std	Red	Std		Tension load in uncracked concrete	V	[kN]	4,0	4,0	4,8	6,3	9,2	9,2	17,1	17,1	27,4	27,4		Displacement	δνο	[mm]	1,8	1,8	1,8	1,8	2,4	2,4	3,0	3,0	3,0	3,0			δ∨∞	[mm]	2,7	2,7	2,7	2,7	3,6	3,6	4,5	4,5	4,5	4,5	¹⁾ Use restricted to anchoring statically indeterminate structural components	LT			--	--		Performances			Characteristic resistance under shear load			Displacement under shear load		Annex C 2 # European Technical Assessment ETA 18/0483 of 13/09/2018 Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague Trade name of the construction product LTS Product family to which the construction product belongs Product area code: 33 Torque controlled expansion anchor for use in cracked and uncracked concrete Manufacturer LINK YAPI SAN. VE TİC. AŞ. GOSB 1000 CD. NO:1016 ÇAYIROVA – GEBZE KOCAELİ TURKEY **Manufacturing plant** Manufacturing Plant No 2 This European Technical Assessment contains 12 pages including 10 Annexes which form an integral part of this assessment This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of EAD 330232-00-0601 Mechanical fasteners for use in concrete This version replaces ETA 18/0483 issued on 05/06/2018 This version is a corrigendum to ETA 18/0483 of 05/06/2018 Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such. ## 1. Technical description of the product The LTS are through-fixing torque-controlled expansion anchors in sizes of M8, M10, M12, M16 and M20. Each type comprises a special bolt with a taper, an expansion sleeve, a hexagonal nut and a washer. The anchors are made from carbon steel finished in zinc/aluminium coating. The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage. The installed anchor is shown in Annex 1. # 2. Specification of the intended use in accordance with the applicable EAD The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B. The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works. # 3. Performance of the product and references to the methods used for its assessment 3.1 Mechanical resistance and stability (BWR 1)	Essential characteristic	Performance		--	---------------		Characteristic resistance to tension load	See Annex C 1		(static and quasi-static loading)			Characteristic resistance to shear load	See Annex C 2		(static and quasi-static loading)			Characteristic resistance and displacement for seismic	See Annex C 4		performance category C2		3.2 Safety in case of fire (BWR 2)	Essential characteristic	Performance		--------------------------	----------------------------------		Reaction to fire	Class A1 according to EN 13501-1		Resistance to fire	Seen Annex C 3	# 4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base According to the Decision 97/463/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply. # 5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague. Issued in Prague on 13.09.2018 By Ing. Mária Schaan Head of the Technical Assessment Body _ ¹ Official Journal of the European Communities L 198/31 25.7.1997 # **Table A1 - Materials**	Component	Material		------------------	---		Anchor body	Steel rod on coil cold forged bolts		Expansion sleeve	Steel grade DC03, M8-M12 C590, M16-M20 C490, according EN 10139		Hexagonal nut	according DIN 934		Washer	according DIN 125A or DIN 9021	# **Table A2 – Material properties**			M8 - M12	M16 - M20		-----------------------------	------	-----------	-----------		Expansion sleeve – hardness	[HV]	185 - 215	155 - 185	# Table A3 - Marking	Table A3 - I	viain	9																					--------------	-------	----------------	------	-------	-------	----------------	-------	-------	------	---------	------	-------	-------	--------	---------	--------	---------	---------	-------	--------	-----------												M8																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
										Bolt length	[mm]	60)	65	75	5	80	85		90	ç	95	100	10	5 11	5	120	140)	150	160		Head marking		В		b	С		d	D		е		Е	F	f	C	9	Н	K		L	М		Bolt marking		-/1	0 .	-/15	10/2	25	5/30	20/3	5 2	25/40	30	/45	35/5	0 40/5	55 50/	65 5	5/70	75/9	0 8	5/100	95/110		M10																							Bolt length	[mm]	6	5	8	0	8	5	90		95		11	5	120	13	30	140)	150)	180		Head marking		Е	В)	(е		Е		G	;	Н		J	K		L		Р		Bolt marking		-/	/5	-/2	20	5/2	25	10/30)	15/3	5	35/	55	40/60	50	/70	60/8	30	70/9	0 1	00/120		M12																							Bolt length	[mm]	80	100	105	110	115	120	125	13	35 14	0	150	160	180	200	220	24	0 2	50	260	280		Head marking		D	F	f	G	g	h	Н	,	J K	`	L	М	Р	R	S	Т		U	V	Х		Bolt marking		/ 5	5/25	10/30	15/35	20/4	25/45	30/50	40	60 45/6	65 5	55/75	65/85	85/105	105/125	125/14	5 145/1	165 154	5/175	165/18	5 185/205												M16													Bolt length	[mm]	10	0	105	1	25	130	1	40	15	0	16	0	180	200	22	20	250	2	280	300		Head marking		F		f		Н	7		K	L		N	1	Р	R	S	3	U		Χ	Υ		Bolt marking		-/5	5	-/10	5/	/25	10/3) 20)/40	30/	50	40/	60	60/80	80/100	100/	1201	30/15	0 160	0/180	180/200												M20													Bolt length	[mm]		125		14	1 0		160		1	65			180	2	00		250		3	300		Head marking			Н		ŀ	<		М			m			Р		R		U			Υ		Bolt marking			-/5		-/2	20		20/40		24	4/45	5	4	0/60	60)/80	1	10/13	30	160	0/180		LTS			---------------------	-----------		Product description	Annex A 2		Materials			Marking		#### Specifications of intended use #### **Anchorages subject to:** - · Static and quasi-static load - Fire exposure - Seismic actions category C2 (max w = 0,8 mm), size M10, M12, M16, only standard embedment #### **Base materials** - · Cracked or uncracked concrete. - Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12. #### **Use conditions (Environmental conditions)** • Structures subject to dry internal conditions. #### Design: - The anchorages are designed in accordance with the FprEN 1992-4:2016 and EOTA Technical Report TR 055, December 2016 under the responsibility of an engineer experienced in anchorages and concrete work. - Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings. - Anchorages under seismic actions (cracked concrete) have to be designed in accordance with FprEN 1992-4:2016 and EOTA Technical Report TR 055, December 2016. - Anchorages under fire exposure have to be designed in accordance with FprEN 1992-4:2016 and EOTA Technical Report TR 055, December 2016. #### Installation: - Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site. - Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor. - Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools. - Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance. - In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.	LTS			--------------------------------	-----------		Intended use Specifications	Annex B 1		C:				param		Cto o do ad				Dadwaada			lastallatia		-------	---------------------	------------	---------------------	---------------------	------------	-----------------------	------------------------	-----------------------	----------	-----------------------	------------------------	-----------------------	------------------------		Size	Drill hole diameter		Thread	Hole diameter	Min.	Nominal	embedment Effective	Max.	Min.	Nominal	embedment Effective	Max.	Installatio torque			ulametei	lengui	lengui	in fixture			embedment		hole	embedment			torque							depth	depth	depth	thickness		depth		thickness				d ₀ [mm]	I [mm]	I _G [mm]	d _f [mm]		h _{nom} [mm]		t _{fix} [mm]		h _{nom} [mm]	h _{ef} [mm]	t _{fix} [mm]	T _{inst} [N.m				60	25	9	-	-	-	-	50	40	32	10	_				65	30	9	-	-	-	-	50	40	32	15					75	35	9	65	55	47	10	50	40	32	25					80 85	40 45	9	65 65	55 55	47 47	15 20	50 50	40 40	32 32	30 35					90	50	9	65	55	47	25	50	40	32	40				_	95	55	9	65	55	47	30	50	40	32	45			M8	8	100	60	9	65	55	47	35	50	40	32	50	10				105	65	9	65	55	47	40	50	40	32	55					115	75	9	65	55	47	50	50	40	32	65					120	80	9	65	55	47	55	50	40	32	70					140	100	9	65	55	47	75	50	40	32	90					150 160	100 100	9	65 65	55 55	47 47	85 95	50 50	40 40	32 32	100 110					65	21	11	-	-	-	- 95	59	49	39	5					80	31	11	-	-	-	-	59	49	39	20					85	36	11	79	69	59	5	59	49	39	25					90	41	11	79	69	59	10	59	49	39	30					95	46	11	79	69	59	15	59	49	39	35			M10	10	115	66	11	79	69	59	35	59	49	39	55	20				120	71	11	79	69	59	40	59	49	39	60					130	81	11	79	69	59	50	59	49	39	70					140 150	91 101	11 11	79 79	69 69	59 59	60 70	59 59	49 49	39 39	80 90					180	100	11	79	69	59	100	59	49	39	120					80	30	13	-	-	-	-	70	60	48	5					100	40	13	90	80	68	5	70	60	48	25					105	45	13	90	80	68	10	70	60	48	30					110	50	13	90	80	68	15	70	60	48	35					115	55	13	90	80	68	20	70	60	48	40					120	60	13	90	80	68	25	70	60	48	45					125	65	13	90	80	68	30	70	60	48	50					135 140	75 80	13 13	90 90	80 80	68 68	40 45	70 70	60 60	48 48	60 65			M12	12	150	90	13	90	80	68	55	70	60	48	75	40				160	100	13	90	80	68	65	70	60	48	85					180	100	13	90	80	68	85	70	60	48	105					200	100	13	90	80	68	105	70	60	48	125					220	100	13	90	80	68	125	70	60	48	145					240	100	13	90	80	68	145	70	60	48	165					250	100	13	90	80	68	155	70	60	48	175					260	100	13	90	80	68	165	70	60	48	185				-	280 100	100 30	13 18	90	80	- 68	185	70 90	60 80	48 65	205 5					105	35	18	-	-	-	-	90	80	65	10					125	45	18	110	100	85	5	90	80	65	25					130	50	18	110	100	85	10	90	80	65	30					140	60	18	110	100	85	20	90	80	65	40					150	70	18	110	100	85	30	90	80	65	50			M16	16	160	80	18	110	100	85	40	90	80	65	60	100				180	100	18	110	100	85	60	90	80	65	80					200 220	100 100	18 18	110 110	100 100	85 85	80 100	90 90	80 80	65 65	100 120					250	100	18	110	100	85	130	90	80	65	150					280	100	18	110	100	85	160	90	80	65	180					300	100	18	110	100	85	180	90	80	65	200					125	50	22	-	-	-	-	110	100	80	5					140	50	22	-	-	-	-	110	100	80	20					160	61	22	129	119	99	20	110	100	80	40			M20	20	165	66	22	129	119	99	25	110	100	80	45	180		iviZU	20	180	81	22	129	119	99	40	110	100	80	60	100				200	100	22	129	119	99	60	110	100	80	80					250	100	22	129	119	99	110	110	100	80	130					300	100	22	129	119	99	160	110	100	80	180			LTS			---	-----------		Intended use Installation parameters	Annex B 2		Table B2 - Installation	parameters - M	linimum spac	ing and edd	ge distance		--------------------------------	----------------	--------------	-------------	-------------		. a.b.e ==etaae	pa.a		5 44 643	go a.o.a		Size	-	-	M	8	M ²	10	M ²	12	M ²	16	M:	20		-------------------------	---------------------------------	--------------	-------------------	-----	-------------------	-----	----------------	-----	----------------	-----	-----	-----					Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std	Red	Std
Minimum thickness of co	oncrete member h _{min}	[mm]	100	100	100	120	100	140	130	170	160	200		Minimum spacing and e	dge distance in cracked	concre	ete											Minimum spacing	Smiin	[mm]	55	50	75	70	150	90	190	160	300	180			for edge distance c≥	[mm]	45	50	60	65	100	80	125	130	200	150		Minimum edge distance	Cmin	[mm]	40	40	50	45	80	65	110	90	120	100			for spacing s ≥	[mm]	80	80	100	100	180	150	280	240	260	220		Minimum spacing and e	dge distance in uncrack	ed con	crete											Minimum spacing	Smin	[mm]	55	50	75	70	150	90	190	160	300	180			for edge distance c≥	[mm]	45	50	60	65	100	80	125	130	200	150		Minimum edge distance	Cmin	[mm]	45	40	60	50	70	65	100	85	160	100			for spacing s ≥	[mm]	55	100	75	110	150	180	190	240	300	225	¹⁾ Use restricted to anchoring statically indeterminate structural components # **Pre-torque installation** # Post-torque installation	LTS			---	-----------		Intended use Installation parameters	Annex B 3	### **Installation instructions** 1. Drill a hole of required diameter and depth 2. Clear the hole of drilling dust and debris (using blowpump or equivalent method) 3. Lightly tap the throughbolt through the fixture into hole with a hammer, until fixing depth is reached 4. Tighten to the recommended torque 5. Assembled condition of anchor **LTS** Intended use Installation instructions Annex B 4 # Table C1 - Characteristic resistance under tension load	Steel failure									---------------------------	------------	------	-----------------------	-----------------------	---------	---------	---------		Size			M8	M10	M12	M16	M20					Red ¹⁾ Std	Red ¹⁾ Std	Red Std	Red Std	Red Std		Characteristic resistance	$N_{Rk,s}$	[kN]	11,0	17,5	25,8	45,8	70,0		Partial safety factor	γMs	[-]	1,4	1,4	1,4	1,4	1,4		Pull-out failure															---	-------------	------------	------	------	------	------	------	------	------	------	------	------	------		Characteristic resistance in cracked concrete	e C20/25	$N_{Rk,p}$	[kN]	3,0	5,0	6,0	9,0	9,0	12,0	16,0	20,0	_2)	30,0		Characteristic resistance in uncracked conc	rete C20/25	$N_{Rk,p}$	[kN]	7,5	9,0	9,0	12,0	12,0	20,0	_2)	35,0	_2)	_2)		Installation safety factor		γinst	[-]	1,2	1,2	1,2	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Increasing factor																C30/37			1,20	1,12	1,16	1,22	1,22	1,00	1,11	1,14	1,12	1,07		Cracked and uncracked concrete	C40/50	ψс	[-]	1,40	1,22	1,33	1,44	1,44	1,00	1,22	1,28	1,26	1,14			C50/60			1,60	1,33	1,50	1,67	1,67	1,00	1,33	1,43	1,39	1,21		Concrete cone failure														---	--------------------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		Factor for concrete cone failure for cracked concrete	$k_{cr,N}$	[-]					7	,7						Factor for concrete cone failure for uncracked concrete	$k_{\text{ucr},N}$	[-]					11	,0						Installation safety factor	γinst	[-]	1,2	1,2	1,2	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Effective anchorage depth	h _{ef}	[mm]	32	47	39	59	48	68	65	85	80	99		Spacing	S _{cr,N}	[mm]	96	141	117	177	144	204	195	255	240	297		Edge distance	Ccr,N	[mm]	48	71	59	89	72	102	98	128	120	149		Splitting failure														----------------------------	--------------------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		Spacing	Scr,sp	[mm]	170	220	200	300	250	340	320	430	410	530		Edge distance	C _{cr,sp}	[mm]	85	110	100	150	125	170	160	215	205	265		Installation safety factor	γinst	[-]	1,2	1,2	1,2	1,0	1,0	1,0	1,0	1,0	1,0	1,0	¹⁾ Use restricted to anchoring statically indeterminate structural components Table C2 - Displacement under tension load	Size	Size		M	M8		M10		M12		M16		20		------------------------------------	------	------	-------	-----	-------	-----	-----	-----	------	------	------	------					Red1)	Std	Red1)	Std	Red	Std	Red	Std	Red	Std		Tension load in cracked concrete	Ν	[kN]	1,2	2,0	2,4	4,3	4,3	5,7	7,6	9,5	12,3	14,3		Displacement	δηο	[mm]	0,6	0,8	0,3	1,0	0,5	0,7	0,3	0,4	0,4	0,4			δn∞	[mm]	1,0	0,9	1,1	1,4	1,0	0,9	0,8	1,1	1,3	0,7		Tension load in uncracked concrete	Ν	[kN]	3,0	3,6	3,6	5,7	5,7	9,5	12,6	16,7	17,2	23,6		Displacement	δηο	[mm]	0,1	0,3	0,3	0,3	0,1	0,6	0,5	0,2	0,1	0,6			δn∞	[mm]	1,0	0,9	1,1	1,4	1,0	0,9	0,8	1,1	1,3	0,7	¹⁾ Use restricted to anchoring statically indeterminate structural components Performances Characteristic resistance under tension load Displacement under tension load ²⁾ Pull-out failure mode is not decisive # Table C3 – Characteristic resistance under shear load	Steel failure without lever arm														---------------------------------	-----------------------	------	-------------------	-----	-------	-----	-----	-----	-----	-----	-----	-----		Size				M8		M10		12	M16		M20						Red ¹⁾	Std	Red1)	Std	Red	Std	Red	Std	Red	Std		Characteristic resistance	V^0 Rk,s	[kN]	9,	1	15	,7	23	,7	47	',1	60),6		Ductility factor	k ₇	[-]	0,	8	0,	8	0,	8	0,	,8	0	,8		Partial safety factor	γMs	[-]	1,2	25	1,2	25	1,2	25	1,2	25	1,	25		Steel failure with lever arm									------------------------------	----------------	-----	------	------	------	------	------		Characteristic resistance	$M^0_{Rk,s}$ [Nm]	22	45	79	200	389		Partial safety factor	γMs	[-]	1,25	1,25	1,25	1,25	1,25		Concrete pry-out failure														----------------------------	----------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		Factor	k ₈	[-]	1,0	1,0	1,0	1,0	1,0	2,0	2,0	2,0	2,0	2,0		Installation safety factor	γinst	[-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0		Concrete edge failure														----------------------------	------------	------	-----	--------	-----	-----	-----	-----	-----	-----	-----	-----		Effective length of anchor	l f	[mm]	32	47	39	59	48	68	65	85	80	99		Anchor diameter	d_{nom}	[mm]	8	\sim	1	0	1	2	1	6	2	0		Installation safety factor	γinst	[-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	¹⁾ Use restricted to anchoring statically indeterminate structural components # Table C4 - Displacement under shear load	Size		M8		M10		M12		M16		M20				--	---------------	------	-------	-----	-------	-----	------	------	------	------	------	------					Red1)	Std	Red1)	Std	Red	Std	Red	Std	Red	Std		Shear load in cracked and uncracked concrete	V	[kN]	5,8	5,8	9,2	9,2	13,3	13,3	24,5	24,5	38,5	38,5		Displacement	δ_{V0}	[mm]	1,2	1,2	1,5	1,5	2,0	2,0	2,4	2,4	2,6	2,6			δ∨∞	[mm]	1,8	1,8	2,3	2,3	3,0	3,0	3,6	3,6	3,9	3,9	¹⁾ Use restricted to anchoring statically indeterminate structural components	LTS			---	-----------		Performances Characteristic resistance under shear load Displacement under shear load	Annex C 2	Table C5 - Characteristic values of resistance to tension load under fire exposure¹⁾	Size			I	18	M.	10	M	12	М	16	M:	20		--	------------------	------	-------------------	-----	-------------------	-----	-----	-----------------	-----	------	------	------					Red ²⁾		Red ²⁾		Red		Red		Red			Characteristic fire resistance duration at 30 minutes			•					•	•	•	•	•		Steel failure	$N_{Rk,s,fi}$	[kN]	0	,4	0,	,9	1.	,7	3	,1	4	,9		Pull-out failure	$N_{Rk,p,fi}$		0,8	1,3	1,5	2,3	2,3	3,0	4,0	5,0	-	-		Concrete cone failure	$N_{Rk,c,fi}$	[kN]	1,0	2,7	1,7	4,8	2,9	6,9	6,1	12,0	10,3	17,6		Characteristic fire resistance duration at 60 minutes														Steel failure	$N_{Rk,s,fi}$,3	0.	8		,3	2	,4	3	,7		Pull-out failure	$N_{Rk,p,fi}$	[kN]	0,8	1,3	1,5	2,3	2,3	3,0	4,0	5,0	-	-		Concrete cone failure	$N_{Rk,c,fi}$	[kN]	1,0	2,7	1,7	4,8	2,9	6,9	6,1	12,0	10,3	17,6		Characteristic fire resistance duration at 90 minutes														Steel failure	$N_{Rk,s,fi}$	[kN]	0	,3	0.	6	1		2	,0	3	,2		Pull-out failure	$N_{Rk,p,fi}$	[kN]	0,8	1,3	1,5	2,3	2,3	3,0	4,0	5,0	-	-		Concrete cone failure	$N_{Rk,c,fi}$	[kN]	1,0	2,7	1,7	4,8	2,9	6,9	6,1	12,0	10,3	17,6		Characteristic fire resistance duration at 120 minutes	;													Steel failure	$N_{Rk,s,fi}$	[kN]	0	,2	0.	5	0	,8		,6	2	,5		Pull-out failure	$N_{Rk,p,fi}$	[kN]	0,6	1,0	1,2	1,8	1,8	2,4	3,2																																																																																																																																																																																																																																														
4,0 | - | - | | Concrete cone failure | $N_{Rk,c,fi}$ | [kN] | 0,8 | 2,2 | 1,4 | 3,9 | 2,3 | 5,5 | 4,9 | 9,6 | 8,2 | 14,0 | | Spacing | Scr,N | [mm] | | | | | 4 x | h _{ef} | | | | | | | Smin | [mm] | 55 | 50 | 75 | 70 | 150 | 90 | 190 | 160 | 300 | 180 | | Edge distance | Ccr,N | [mm] | | | | | | h _{ef} | | | | | | | C _{min} | [mm] | | | f howev | | | | | | | | $^{^{1)}}$ In absence of other national regulations the partial safety factor for resistance under fire exposure. $\gamma_{M,fi} = 1,0$ is recommended Table C6 - Characteristic values of resistance to shear load under fire exposure | Size | | | M8 | M10 | M12 | M16 | M20 | |--|--|---------|--------------------------------------|---|------------------------------|---------------|---------------| | | | | Red ¹⁾ Std | Red ¹⁾ Std | Red Std | Red Std | Red Std | | Characteristic fire resistance duration at 30 minutes | | | | | | | | | Steel failure without lever arm | $V_{Rk,s,fi}$ | [kN] | 0,4 | 0,9 | 1,7 | 3,1 | 4,9 | | Steel failure with lever arm | $M_{Rk,s,fi}$ | [Nm] | 0,4 | 1,1 | 2,6 | 6,7 | 13,0 | | Characteristic fire resistance duration at 60 minutes | | | | | | | | | Steel failure without lever arm | $V_{Rk,s,fi}$ | [kN] | 0,3 | 0,8 | 1,3 | 2,4 | 3,7 | | Steel failure with lever arm | $M_{Rk,s,fi}$ | [Nm] | 0,3 | 1,0 | 2,0 | 5,0 | 9,7 | | Characteristic fire resistance duration at 90 minutes | | | | | | | | | Steel failure without lever arm | $V_{Rk,s,fi}$ | [kN] | 0,3 | 0,6 | 1,1 | 2,0 | 3,2 | | Steel failure with lever arm | M _{Rk,s,fi} [Nm] 0,3 0,7 1,7 4,3 8, | | | | | | 8,4 | | Characteristic fire resistance duration at 120 minutes | 3 | | | | | | | | Steel failure without lever arm | $V_{Rk,s,fi}$ | [kN] | 0,2 | 0,5 | 0,8 | 1,6 | 2,5 | | Steel failure with lever arm | $M_{Rk,s,fi}$ | [Nm] | 0,2 | 0,6 | 1,3 | 3,3 | 6,5 | | Concrete pry-out failure | | | | | | | | | Factor ²⁾ | k ₈ | [-] | 1,0 1,0 | 1,0 1,0 | 1,0 2,0 | 2,0 2,0 | 2,0 2,0 | | Concrete edge failure | | | | e V ⁰ _{Rk,c,fi} in cond | crete C20/25 t | o C50/60 is d | etermined by: | | | $V_{Rk,c,fi}^0 = 0.25 \times V_{Rk,c(\le 90)}^0$ and | | | | | | | | | | | V ⁰ _{Rk,c(≤120)} | | | | | | | | | | naracteristic re | sistance V ^o Rk,c | in cracked co | ncrete | | | U20/25 I | unaer i | normal tempe | rature | | | | ¹⁾ Use restricted to anchoring statically indeterminate structural components | LTS | | |--|-----------| | Performances Characteristic values of resistance under fire exposure | Annex C 3 | ²⁾ Use restricted to anchoring statically indeterminate structural components ²⁾ The values of factor k₈ and relevant values of N_{Rk,c,fi} given in the Table C5 have to be considered in the design # Table C7 – Characteristic values of resistance under seismic action category C2 | | | M10 | M12 | M16 | |-------------------------|--|--|--|---------------------| | | | | Standard | | | <u> </u> | - | | | | | | | | | | | N _{Rk,s,eq,C2} | [kN] | 17,5 | 25,8 | 45,8 | | γMs,eq | [-] | 1,4 | 1,4 | 1,4 | | | | | | | | N _{Rk,p,eq,C2} | [kN] | 3,4 | 7,0 | 10,9 | | γinst,eq | [-] | 1,0 | 1,0 | 1,0 | | | | | | | | | | | | | | V _{Rk,s,eq,C2} | [kN] | 9,2 | 11,1 | 28,2 | | γMs,eq | [-] | 1,25 | 1,25 | 1,25 | | αgap | [-] | | 0,5 | | | | γMs,eq NRk,p,eq,C2 γinst,eq VRk,s,eq,C2 γMs,eq | γMs,eq [-] NRk,p,eq,C2 [kN] γinst,eq [-] VRk,s,eq,C2 [kN] γMs,eq [-] | N _{Rk,s,eq,C2} [kN] 17,5
γ _{Ms,eq} [-] 1,4
N _{Rk,p,eq,C2} [kN] 3,4
γ _{inst,eq} [-] 1,0
V _{Rk,s,eq,C2} [kN] 9,2
γ _{Ms,eq} [-] 1,25 | Standard Standard | # Table C8 - Displacement under tensile and shear load - seismic category C2 | Size | | M10 | M12 | M16 | |--------------------|------|-----|------|------| | δ N,eq(DLS) | [mm] | 2,8 | 3,0 | 4,2 | | δ N,eq(ULS) | [mm] | 9,3 | 12,2 | 13,0 | | δ V,eq(DLS) | [mm] | 4,5 | 4,3 | 5,8 | | δ V,eq(ULS) | [mm] | 7,0 | 7,0 | 10,2 | | LTS | | |---|-----------| | Performances Reduction factors for seismic design | Annex C 4 |